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Propagation of Some Systematic Errors in X-ray Line Profile Analysis* 
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Three systematic errors are treated: uncorrected constant background, truncation, and the effect of 
sampling the observed profile at a finite number of points. Conditions under which a constant back- 
ground can be ignored are presented. Background contributions to Fourier coefficients A(n) for non- 
integer values of n generally do not vanish as they may for integer n. The use of dA(n)/dn for size and 
strain analyses is invalidated by the presence of such background contributions as well as by truncation 
effects. Truncation distorts A(n) values throughout the whole range of n in addition to producing a hook 
effect. The size distribution function, P(n), is especially affected; as little as 0.5 % truncation can produce 
3 Vo error in the average crystallite size and makes P(1) negative, a physical impossibility. The use of a 
finite number, M, of sampling points on the observed profile makes A(n) periodic in n with period M, 
e.g., A(M) = A(6). This produces an effective truncation of the A(n) versus n curve. Investigation of this 
truncation provides a measure of how closely spaced the sampling points need to be in order to convey 
all significant profile shape information. 

Introduction 

The validity of X-ray line profile analyses for average 
values, and particularly for distributions, of crystallite 
size and strain depends strongly on the magnitude and 
nature of the errors propagated through the analyses. 
Important parameters are (a) the breadth of the 
intrinsic profile relative to the instrumental profile, 
(b) counting statistics and counting strategy, and (c) 
sampling factors such as estimation of the background, 
angular range of observation, and the number of 
equally spaced points at which the diffraction line 
intensity is actually measured. The instrumental profile 
is ordinarily experimentally optimized and rather 
inflexible for a particular instrument. The propagation 
of counting statistical errors and optimization of 
counting strategy have recently been considered 
(Wilson, Thomsen & Yap, 1965; Wilson, 1967). The 
three sampling errors mentioned are treated here. 

Background corrections 

Conditions under which background may be neglected 
In line profile analyses a continuing problem has 

been the determination of the appropriate background 
corrections, especially in the tails of the peaks. It is 
shown below, however, that frequently a constant back- 
ground can be ignored without significant distortion 
of the desired information. 

In a Fourier series representation of a profile, 
o o  

h(x) = Ao+ • An exp (2zcinx) , (1) 
- - o o  

(n 4: O) 
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A0 is the total area under what is taken to be the net 
peak after background corrections, if any, have been 
made. Its function is to set the base line from which the 
represented profile will be drawn. If a constant back- 
ground of intensity C, indicated in Fig. 1, is left in the 
data, the observed profile h(x)= h'(x)+ C and 

l ~ [h' (x) + C] exp A n  = - ½  (2z~inx) dx , (2) 

which becomes 
sin zcn 

A n = A ' ~ + C - - - - ,  (3) 
rcn 

where the primes refer to the unobserved error-free 
quantities. For integer n, (3) shows that only A0 will 
be affected by the presence of the constant background 
estimation error, C. If the constant background has 
been overestimated C will have a negative value, thus 
depressing A0 and leading to the well known 'hook' 
effect (e.g. Warren, 1959). 

Since the multiplicative relation among transforms 
of convoluted profiles is also valid for the individual 
coefficients, A~-  f g, - A , A ,  (4) 

where f, g, and h refer to the intrinsic, instrumental, 
and observed profiles, respectively. Since errors in the 
A0's of h(x) and g(x) will affect only A0 off(x),  a con- 
stant background can be ignored when all of the 
significant size and strain information can be deter- 
mined from the coefficients other than A0. Criteria for 
ignoring A0 can be based on the line profile results 
themselves, as follows. 

The crystallite size distribution function, P(n), is 
given by (Bienenstock, 1963; Smith & Simpson, 1965) 

P(n)=  An+l-2An+An-1 
Ao-AI  " (5) 

Here the An's are for the pure size broadened profile 
only and n is both the order number of the coefficient 
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and a measure of length, L, through the relation 
(Warren, 1959) 

n2 n2 
L = na 3 = 2 (sin 02-  sin 0a) - A (29) cos 0"  (6) 

where 02 and 0t are the Bragg angles corresponding to 
the ends of the observation range.* 

From (5), if P ( I )=0 ,  A o - A I = A I - A 2 .  Thus if P(1) 
is negligibly small a separate determination of the 
background is not needed; its inclusion in the peak 
measurements would distort only the unused A0. Smith 
& Simpson (1965) have given a quantitative formula- 
tion of the approximations made. 

While P(1) cannot be determined without knowledge 
of the correct A0, its relative size can be inferred in at 
least two ways. The size of P(1) is the probability 
that a crystallite dimension of a~ will occur parallel 
to the diffraction vector. For an extreme case such 
as cubes viewed parallel to a face diagonal P(1)= 
P(2)=P(3)  etc., until the diagonal dimension is 
reached. Similarly, for cubes viewed along the body 
diagonal P(1) would be the largest P(n) of the set. 
But in the usual case one expects P(1) to be small if 
a~ is small compared to the average crystallite size, L. 
That case can be recognized by inspection of the initial 
data as one may expect a'3 ~-L/Q, where Q is the ratio 
of the range of observation to the integral breadth of 
the pure size broadened profile. 

The second estimate of the importance of P(1) rests 
on the assumption that P(1)< P(2) for the usual cases 
(ordinary size distributions and Q>> 1). An unnormal- 
ized set of P(n)'s, excepting P(1), can be derived from 
(5) without reference to A0. If such a derived set shows 
P(2) negligibly small, the assumption is that P(1) will 
be also. Then A o - A I ~ _ A ~ - A z  and the line profile 
analysis for size can be carried out without direct 
experimental determination of A0 or the constant 
background. Further, these considerations of P(1) 
can be made after the Warren & Averbach (1952) 
procedure, for example, has been applied to separate 
size and strain effect. 

Graphical estimation of A0 from the other An's is 
more readily accomplished for the pure strain broad- 
ened profile than for the size broadened profile. In 
certain cases discussed by Eastabrook & Wilson (1952) 
the strain distribution is a smoothly varying and rela- 
tively simple function, though not necessarily as simple 
as Gaussian. 

Background contribution between integer values o f  n 

Although for An restricted to integer n the constant 
background contributes only to A0, it also makes a 

* Note added in proof: - There is no general reason inter- 
nal to the mathematics from this point on why L cannot be 
arbitrarily cbosen. However, in applications to actual crystals 
the meaning of p(n) and hence the significance of equation (5) 
are called into question and require further discussion if the 
observation range does not correspond to a reciprocal lattice 
period (Bienenstock, 1966; Doi, 1961; and, for the equivalent 
problem for the strain case, Eastabrook & Wilson, 1952). 

contribution between integer values of n. The use of a 
series representation implies a periodic function in 
x-space, which means that the constant background 
to be transformed extends in principle from minus to 
plus infinity. Fig. 1 indicates this situation. The Fourier 
transform of such a constant is C 6(n), which has zero 
value everywhere except at n =0. However, the trans- 
form that would actually be made in practice is that 
of the background rectangle of height C and unit 
length under a single peak. If the coordinate in trans- 
form space is t, the continuous variable version of n, 
the required transform is C sin z~t/rct, noted previously 
to contain all of the background contribution. While 
this background contribution is zero at all integer 
values of t = n ¢ O ,  in agreement with the previous 
discussion of equation (3), it is distinctly not zero 
between integer values of n. 

Fig. 2 shows the difference between continuous n and 
integer n as a basis for an An versus n curve. A Gaus- 
sian profile was used and the sin z~n/rcn contribution 
from an assumed constant background was included. 
For demonstration an unusually large value of C, 0.2, 
was used for Fig.2. However, a similar plot made 
with C =  0.05 shows a disparity of nearly 3 Yo between 
the two curves at n = ½. 

In the series representation, only the An values at 
integer n are defined; the slope of a single smooth 
curve drawn through all An's at points where n is 

^ 

/ \ 

/ i : ' 
I 

/ \, ,/ '\ 

-1/2 0 x 1/2 

Fig. 1. Diffraction profile with a constant background, C, as 
represented by a Fourier series. 

1"0 

An \ C=0"2 

0"5 

0 5 
n 

Fig.2. Difference between continuous n (solid curve) and inte- 
ger n (dashed curve) evaluations of the Fourier transform 
of a Gaussian profile with a constant background. 
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integer will not be, in general, the value of OAn/On 
either at the origin, at n = 1, at n = 2, or at more than 
two intermediate points anywhere in the range 0 < n < 2. 
These observations, then, show that valid analyses 
cannot be based on uncritical use of derivatives of An 
with respect to n, as has also been warned against by 
others (Kukol', 1962; Bienenstock, 1963; Smith & 
Simpson, 1965). 

Inadvertent truncation from overestimation of back- 
ground 

In (3) and the discussion based on it there is no 
mathematical reason why C cannot be negative. The 
background can be overestimated enough to cause the 
apparent net intensity to fall to zero well within the 
observation range. In principle the appropriate negative 
values should be determined for the apparent net 
intensity over the remainder of the observation range. 
But in practice one assigns zeroes rather than negative 
intensities. The result is a truncation of the line profile 
data at the points where the zeroes start. Let these 
points be at +B/2 and -B/2  and let the range of 
observation be from - R / 2  to + R/2. Then the second 

term in (3) becomes CR sin ~z______nB/R , which no longer 
rcn 

goes to zero at all integer n's but contributes errors 
directly to various An's. 

Truncation effects 

Truncation effects in line profile analysis have been 
investigated by Wilson (1942), Bertaut (1952), Easta- 
brook & Wilson (1952), Doi (1957), Kukol '  (1962), 
Wilkens & Hartman(1963), and Wilson(1965), among 
others. A truncation necessarily occurs because the 
range of the observations is finite; a profile of inher- 
ently infinite extent is truncated at arbitrary points 
which are scaled to have coordinates --}2 and ½ as 
shown in Fig. 1. The difference between the transform 
of the truncated profile and the desired transform of 
the untruncated single profile of infinite extent can 

/H'(y) 

_~, H'(y) dy 

~-tY-~ ~" ~" 
z, W - - ~  

Fig. 3. Geometric representation of convolution. The function 
W(t-y) gives a contribution at t from each element of 
H'(y) on which it operates as indicated. The sum of such 
contributions from all settings of W(t-y) on H'(y) is the 
convolution, tt(t). 

produce a 'hook'  effect, and can produce serious 
error in the An's and P(n)'s. 

The effects of truncation may be further examined 
through use of the relation between convolutions and 
transforms. Let the observation range extend from 
-R/2 to R/2. Then the actual observed profile, h(x), 
is h(x)=h'(x)w(R) , (7) 

where h'(x) is the complete profile and w(R) is a win- 
dow function defined as 

w(R)= { lo if -R /2<x< (8) 

Let the transforms of h'(x), h(x) and w(R) be H'(t,) 
H(t), and W(t), respectively. By the well-known con- 
volution theorem 

H ( t ) =  I W(t-y) H'(y) dy 

-- f sin zcR(t-y) H'(y)dy. (9) 
7r(t- y) 

The action of (9) may be visualized by reference to 
Fig. 3. The function W(t-y) operates on each element 
of H'(y), in turn, and the successive contributions at 
y =  t are summed up by the integration. The height to 
which W(t-y) is to be drawn depends on the factor 
H'(y)dy and hence on its position relative to H'(y). 
As long as H'(y) is not a constant, some of the oscil- 
latory character of sin nRt/rct (the transform of the 
window function) will be present in the convolution 
result, H(t). The degree to which this character will 
be apparent depends on the width of H'(t) compared 
with, for example, 1/R, the position of the first zero 
in sin 7rRt/rct. If h'(x) is broad in relation to R, then 
H'(t) will be narrow and the oscillatory character will 
be apparent. For example, let h'(x)= exp (-xE/k2), for 
which H ' ( t )  = (2k/l/n) exp ( -  kErcEt 2). If the half-width 
at 1/e of maximum is taken as the breadth measure for 
the Gaussian, then the ratio of the breadth of the 
profile to the breadth of the observation range is k/R 
while that of the transforms is R/nk. The effect of 
increasing the observation range, R, on reducing the 
oscillation due to truncation of Gaussian functions is 
shown in Figs. 4 and 5. The figures present the starting 
function, the truncation points, and the individual 
calculations with two values of k/R corresponding to 
truncations at the points where the profile height has 
fallen to 207o and to 5 7o of its maximum value. 

In the usual case the variables are so chosen that 
R =  1. The oscillating function is then, except for a 
change in symbols and a scale factor, the last term of 
(3). But the manner of occurrence is quite different. 
The oscillation term in (3) is additive, hence contributes 
nothing at integer t--n and does not put the A n's in 
error. The oscillatory term from truncation, being 
convoluted with H(t) rather than added to it, does 
contribute errors to the An's. 

Interest is actually in the intrinsic profile, f'(x), the 
transform of which, F'(t), is obtained from F'(t)G'(t)= 

A C 2 2 -  1" 



H'(t) where G'(t) is the true transform of the instru- 
mental profile. Since g(x) is ordinarily a sharp profile 
measured over the same range as h(x), truncation ef- 
fects on its transform may be neglected, at least for 
low and medium values of n. F(t), the experimental 
determination of F'(t), then becomes 

F(t)- H(t) 
C(t) 

(1o) 

I H'(y) sin zcR (t-y) dy re(t-y) 
I G'(y) sin foR(t-y) 

rift-y) dy 

f H'(y) sin foR(t-y) 
re(t-y) dy 

- G ' ( t )  

1'O 

Thus the discussion of truncation errors in H(t) ap- 
plies simultaneously to F(t). 

The effect of truncation on the general shape of 
H(t), discussed by Bertaut (1952), Kukol '  (1962) and 
Wilkens & Hartman (1963), is perhaps more serious 
than the oscillatory character. Fig.3 shows that if the 
sine function is sharp, i.e. R/z~k is small, H(t) will 
differ little from H'(t). But if _R/zrk is not small, i.e. if 
the sine function is broad relative to H'(t), then H(t) 
will be significantly broader than H'(t). This broaden- 
ing will have a strong effect on the slope at low values 
of t and, hence, on the apparent average particle size. 
Fig. 5 shows this feature in addition to the oscillatory 
character. The general effects at low values of t (or n) 
are a reduction (in the algebraic sense) of the curvature 
of H'(t) near t=O, depression of the higher lying por- 
tions of H'(t) (before renormalization) and elevation 
of the lower portions. Therefore, as Bertaut has 
pointed out, truncation can produce a 'hook'  effect 
even in the intrinsic profile of strainfree material. 

The introduction of a 'hook'  and other distortion 
of the An's is shown in Fig.6 for a case nearer to 
practice than is a Gaussian profile. The An's for an 
experimentally obtained profile were adjusted slightly 
so that the first three coefficients lay on a straight line. 
The modified observed profile is shown in Fig.6(a). 
Truncations of this diffraction profile at 0.5, 5, 10 and 
20Yo of its peak maximum resulted in the An versus 
n transforms shown in Fig. 6(b). Here each set of A n's 
has been separately renormalized to A0= 1. A detect- 
able 'hook'  occurred even for the seemingly negligible 
truncation of 0"5Yo. Common practice in the presence 
of a 'hook'  is to use the 'straight' portion of the An 
versus n curve for determination of average crystallite 
size. The intercept of this straight line on the ordinate 
is the best estimate of the true A0. Since the true A0 
is taken to be unity, the intercept on the abscissa gives 
the average crystallite size directly in terms of a;. The 
effects which the various profile truncations had on 
the size so determined, and on the A1/Az ratio, can be 
judged from Table 1. Truncation of a less unusual 
diffraction profile [Fig.6(c)] resulted in even more 
serious errors in the determination of the average 

Table 1. Effects of various profile truncations 
[cf Fig. 6(a)] 

Change in average 
Truncation Change in AI/A2 crystallite size 

0.5 % 0.05 % 3 % 
5 13 20 

10 26 37 
20 37 140 

f(x) 

0"5 

0 X 

(a) 
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1"0 

0 ,,,,,, \ .  .,,// . --,...,~ 

0"5 

A(n) 

\ / • - . . _~____J  / 

-0"4 . . . . . . . .  
o 5'o lOO n 

(b) 

Fig.4. (a) Gaussian profile with truncation points correspond- 
ing to 5 and 10 % of the peak maximum. (b) - - - - - -  Fourier 
transform of the untruncated Gaussian profile, - ..... Fourier 
transform of the window function for the 5 % truncation 
case, Fourier transform of the window function 
for the 20 % truncation case. 

1"0 

0'5 

A(n) 

- 0 " 4  
0 

" %  i.o TRO.C T,O. 
"~,~. - 5 %  TRUNCATION 

"~,~, - 2 0 %  TRUNCATION % 
\'-,,, 

- . . . . . . . .  - _ _ . ~ .  ~ - - ' -  

5 1 0  i i I i 

n 100 

Fig. 5. Convolution of the Fourier transform of the window 
function with the Fourier transforms of a Gaussian for 0, 5 
and 20 % truncation. 
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particle size (Table 2). It seems worthy of special note 
that a generally significant error of 20% would be 
made in the average crystallite size even if the trunca- 
tion error were only 5%, an amount which intuitively 
might seem to be quite acceptable. Particularly in the 
case where tails of neighboring peaks overlap, as they 
often do for cold-worked metals, it would seem to 
be experimentally improbable that a truncation of less 
than 5% could be guaranteed. 

f(x) 

3'0 

[ - 1O',  1 - 

t I I t I I 
0 x 

(a) 

1"0 

A,, 

0"5 

6'0 

Table 2. Effects o f  various profile truncations 
[cf . Fig. 6(c)] 

Change in average 
Truncation Change in A1/A2 crystallite size 

0.5 % 0.05 % 5 % 
5 12 38 

10 21 77 
20 25 160 

The effect of truncation on crystallite size distribu- 
tion is especially marked. Fig.7 shows the P(n)'s 
derived from equation (5) and the An's of Fig.6(b). 
The general effect of truncation is to make the first 
P(n)'s smaller than they ought to be. One obvious 
feature of the 'hook'  is the physically impossible effect 
of making P(1) negative, as has also been noted by 
others, e.g. Bertaut (1952) and Warren (1959). Some 
P(n)'s calculated from line profile data now in the 
literature are shown in Fig. 8. Even though the required 
An's were obtained only from the relatively small 
plots published, it still appears that significant effects 
on the P(n)'s are prevalent. 

Effect of finite number of profile sampling points 

,, NO TRUNCATION 
o 0"5°/o TRUNCAT!ON 
,, 5 %  TRUNCATION 
• 10% TRUNCATION 
• 20°[o TRUNCATION 

i i i i I i I i r i I r i 

5 10 17 

(b) 

f(x) 

-1~/4 0 x 1/4 

(c) 

Fig.6. (a) Modified observed profile and 5, 10 and 20% 
truncation points. (b) Fourier transforms of the modified 
diffraction profile of (a). (c) Profile used for Table 2. 

The validity of an An depends explicitly on the number 
of points (assumed equally spaced) at which the ob- 
served profile is sampled within the observation range. 
Stokes (1948) made a direct mathematical comparison 

1"01 I m I 

0"5 

P(n) 

0 

- 0 "5  

-1"0 

A NO TRUNCATION 
o 0 ' 5 %  TRUNCATION 
r-, 50/0 TRUNCATION 
• 10% TRUNCATION 
• 200/o TRUNCATION 

-1"5 

~) I I 
- 2 " 0  5 n 10 

1 
15 

Fig. 7. Particle size distributions derived from equation (5) and 
the Fourier coefficients of Fig. 6(b). 



160 SOME S Y S T E M A T I C  E R R O R S  IN X-RAY LINE P R O F I L E  A N A L Y S I S  

of the expression for a profile transform as determined 
by integration with that determined by summation, 
and Doi (1957) has discussed the minimum significant 
spacing of sampling points as a function of experi- 
mental error and statistical fluctuation. Stokes's inve- 
stigation showed that the number of sampling intervals 
must always exceed twice the value of n for the lowest 
frequency Fourier component which is effectively zero. 
Investigation of the same basic point by another 
method enlarges on this necessary, but not sufficient, 
condition and offers further physical understanding. 

Let the observed profile height at the mth incremental 
position be Ira and let A(n) represent a whole set of 
An's. Since the observed profile is the transform of 
A(n) and vice versa, it follows that the kind of periodi- 
city indicated in Fig. 1 is imposed on the transform in 
either space as a result of using incremental sampling 
in the other. In each case the information available is 
a set of coefficients (An or Ira) in one space which 
describes a periodic function in the other space. In 
neither case is it really the periodic function that is 
wanted but, rather, an untruncated non-periodic 
function. 

To illustrate the periodic character, let the observa- 
tion range, R, be divided in M parts. The choice of R 
determines the incremental size, relative to the charac- 
teristic features of H(t), associated with an integer 
step in n. That A(n) will have the period M in n follows 
from that fact that 

M 

An = _r Im exp (2ninm/M) , (11) 
m = 0  

from which M 
Ao= X Ira. (12) 

But m=O 
M M 

An=M= X Im exp (2~iMm/M)= Z Im= Ao , (13) 
m = 0  m = 0  

which is an absurd result for the transform of the true 
diffraction profile. 

Since the periodicity, by constraining all non- 
redundant data to a finite range, introduces an effective 
truncation, the significance of this 'finite M effect' on 
the desired An's depends on how rapidly An falls to 
zero within the range M in n. For simple forms this 
comparison, in turn, depends on the breadth, fl, of 
the observed profile relative to R/M, the sampling 
step size. Examples of the effect of different values of 
fl/(R/M) for both Cauchy and Gaussian profiles are 
shown in Figs. 9 through 12 for 0 < n < 50. Three choices 
of the observation range, R, and two choices of M 
were used. The most obvious feature is the periodicity 
shown for M = 3 2 .  By analogy with Fig. 1 and the 
discussion of truncation, the distortion of A n's due to 
this imposition of periodicity will be negligible if the 
undistorted A(n) has fallen to, and remains, effectively 
zero for M/2 < n < co. The requirement that the coef- 
ficient, An, be effectively zero for the short wavelength 
components of the Fourier series representing f(x) is, 
of course, but another way of requiring that in the 

observed profiles there are no significant features on 
a scale smaller than the step size; the actual profile is 
satisfactorily approximated by a series of straight lines, 
one for each step. That is to say, if the An's were trans- 
formed back to give the observed profile there would 
be negligible truncation error if, but only if, An'~O for 
n > M/2, the point in n corresponding to the end point 
of the observation range in Fig. 1. 

For Gaussian and Cauchy profiles the conditions for 
negligible effect may readily be stated. Let the observa- 
tion range in x-space be R, as before, and let fl be the 
integral breadth in x-space. For the Gaussian profile, 

and f (x)  = exp ( -  n2x2/fl 2) (14) 

A(n)=fl exp (-~flZn2/R2). (15) 

P(n' 0 - - ~ / ~ - - -  

04; 
P(n) 0 . . . . . . . . . . .  

(o) 

O(n) 0 

-°5 
- 0 ' 80  4 n 8 12 

(c) 

Fig. 8. Particle size distributions calculated from data of (a) 
Royen, Tolksdorf, Granzer & Schuster (1964) on magnesium 
oxide powder; (b) Warren, (1959) on cold-worked tungsten 
filings; (c) McKeehan & Warren, (1953) on thoriated tung- 
sten filings. 

1.0 
GAUSSIAN 

M=32 

A(n) I 

0"5 

0 25 n 5"0 

Fig. 9. An curves for Gaussian case and M=32.  (1) R=6.4, 
fl/(R/M)=8.4; (2) R=9.6, fl/(R/M)=5.6; (3) R=19.2. 
fl/(R/M) = 2.8. 
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For the Cauchy profile, 

and f(x) = (1 + n2xZ/fl2) -1 (16) 

A(n) =fl exp (-2f l lnl /R) .  (17) 

Let the requirement for 'negligibly small' be that 
An<eAo at n=M/2.  For the Gaussian case this 
requires by (15) that 

R / M  > 1-~ ( - l n  e)* (18) 

and for the Cauchy case, by (17), that 

> ( - l n e ) .  (19) 
R/M 

For an example, let e = e - 7 ~ 1 0  -3. The requirement 
then becomes f l /(R/M)> 3 for the Gaussian case and 

1"0 
GAUSSIAN 

M=512 

A(n) 

0"5 

0 | 

25 n 50 
Fi8.10. An curves for same Gaussian case as Fi8.9 but with 

M=512 .  (1) R=6.4,  ,8/(R/M)=134; (2) R=9.6,  fl/(R/M)= 
89; (3) R =  19-2, fl/(R/M)=45. Alot t CAUCHY 

M=32 

05 ! 

o 25 n 50 
Fig. 11. An curves for Cauchy case with M=32. (1)R=6.4, 

fl/(R/M)=IO; (2) R=9-6, fl/(R/M)=6.7; (3) R=19.2 
Ill(RIM) = 3.3. 

> 7 for the Cauchy case. (In terms of the more readily 
visualized width at ½ height, instead of integral breadths, 
these conditions are that at least 3 or 4{z, respectively, 
of the sampling steps must fall within the width of the 
profile at half height.) The conditions for the Cauchy 
case of curve 3 of Fig. 11, for example, did not meet 
this requirement; the conditions for curve 2 do, just, 
as there fl/(R/M)=6.7~_7. Curve 3 of Fig.9 is an 
example of a Gaussian case in which the above step- 
size requirement is barely met. 

The reason that the requirements on Ill(R/M) 
turned out to be so relatively undemanding in these 
examples is that both Cauchy and Gaussian profiles 
are smoothly varying functions which do not show 
much small-scale character. One would anticipate 
that actual experimental profiles might have much 
more small-scale character that should be preserved, 
and the minimum acceptable value of fl/(R/M) should 
be substantially increased accordingly. 

In any event, actual carrying out of the transforms 
to n > M/2 will provide direct evidence of whether a 
sufficiently small step-size was used. If An does not 
fall effectively to zero before n reaches M/2 a smaller 
step-size is needed. If An falls to zero only for n quite 
close to M/2, the step size should be decreased (M 
increased) to assure that no significant oscillations in 
An versus n are being omitted by the unavoidable 
truncation at n = M/2. Conversely, if An falls effectively 
to zero for n ~ M/2 and remains there, as n increases, 
an unnecessarily small step size is being used. 
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The Structures of Zeolite Sorption Complexes. 
I. The Structures of Dehydrated Zeolite 5A and its Iodine Sorption Complex* 
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The structure of dehydrated synthetic zeolite 5A (Ca4Na4AlazSix2048, cubic, Pm3m, a0 = 12-42 + 0.01/~) 
has been refined by least-squares analysis of X-ray powder diffraction data, and the structure of its 
sorption complex with nearly six iodine molecules per unit cell (Ca4Na4Al12048.5.6512, a0= 12.29+ 
0.07/~) has been determined and similarly refined. In the 'empty' dehydrated zeolite the two kinds 
of cation appear to have somewhat different positions on the threefold axes, the Ca 2+ ion being close 
to the plane of the 6-ring oxygen window of the sodalite unit and the Na + ion being displaced about 
0"4/~ inward from that position into the sodalite unit. Si, A1-O framework distances are 1-63-1.69/~,. 
In the iodine sorption complex, the I2 molecules lie in mirror planes of the framework structure; they 
are near the large windows and tipped at 32.5 ° to the window planes. The relative orientations of 
I2 molecules could not, however, be completely determined. The I2 molecules in one unit cell have a 
maximum possible aggregate point symmetry 3 and the overall structure is presumably disordered. 
Two different arrangements with point symmetry 3 are possible, and are regarded as more probable 
than some less symmetrical arrangements. The I2 interatomic distance uncorrected for thermal motion 
is 2.72/~, in fair agreement with the value 2"68 ,~ reported for solid iodine; the corrected value, 2.79/~,, 
may be in significant excess of reported values of about 2.67/~ for gaseous I2 molecules. Each I2 mol- 
ecule makes close approaches in its axial direction to a framework oxygen atom and to an iodine atom 
in an adjacent molecule, with an I. • • O distance of 3.29/~, and an I. • • I distance of 3-46/~. The latter, 
and a non-axial I. • .I contact distance of 4.01 A, compare roughly with analogous distances of 3-54 
and 4-06 A in solid iodine. 

Introduction 

This is one of several papers from this laboratory that 
will deal with zeolite ' inclusion complexes'  or 'sorption 
complexes ' ;  that  is, zeolites containing sorbed mol- 
ecules of various kinds. The object of  work of this kind 
is to determine the positions of sorbed molecules in 
relation to the structure of the substrate sorber; i.e. 

* This work was supported by the Army Research Office 
(Durham). Computations were carried out in part by the 
M.I.T. Computation Center. 

t This work was done in partial fulfilment of the requirement 
for the degree of Doctor of Philosophy. Present address: 
Department of Chemistry, University of California, Los 
Angeles 24, California. 

the sorption sites on the internal 'surface' of  the zeolite 
pores. In this and the following papers the zeolite is 
the synthetic type A, selected on account of  its relative 
simplicity of structure, its stability to dehydration,  and 
its capabili ty of sorbing a variety of small molecules. 
In particular, most of  the work will deal with '5A' 
zeolite, which as a result of  partial calcium exchange 
contains fewer cations than '4A' and consequently has 
a somewhat greater sorption capability. 

The present paper deals with the refinement of  the 
structure of the 'empty '  (dehydrated) 5A zeolite and 
the determinat ion of the positions at which iodine mol- 
ecules, I2, are sorbed. A related paper, based on prior 
work done in this laboratory on a bromine sorption 
complex of 4A zeolite, is being published elsewhere 


